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The stability of a vortex street consisting of two parallel rows of staggered arrangement 
is investigated by taking account of the effects of the finite core of the vortex. A finite 
stable region of the transverse-to-longitudinal spacing ratio k is found around 0.281, 
the value obtained by KhrmAn. As the core size increases, this stable region moves 
to larger k. The width of the stable region also changes with the core size 8/P, where 
S is the area of the core and I is the longitudinal spacing of the vortex street. It is 
null at S/P = 0, increases at first in proportion to the square of S/P, takes a maximum 
value at  S/P  II 0.08, then decreases to zero at S/Z2 II 0.1 1. For still larger values of 
S / P  2 0.11, it increases again rather rapidly. The wavenumber of the disturbance 
having the maximum growth rate is shown to be in complete agreement with that 
of a growing' disturbance recently discovered in a vortex street behind a circular 
cylinder. 

1. Introduction 
The regulaz pattern of a vortex street behind a bluff body at a Reynolds number 

above a certain critical value has been much investigated both theoretically and 
experimentally (Wille 1960; Goldstein 1966). Far downstream the vortices arrange 
themselves in two rows, with opposite signs of circulation. Each vortex is located 
opposite the midpoint of the interval between the two closest vortices in the opposite 
row. Taneda (1969) discovered a secondary vortex street re-established after the 
breakdown of such a (primary) vortex street, which brought about a new interest on 
this problem. 

The linear stability of a system of point vortices in two parallel rows was first 
considered by KhrmAn (see Lamb 1932). For two opposite-signed streets of point 
vortices the symmetric configuration is unconditionally unstable. The asymmetric 
configuration, on the other hand, is unstable unless the transverse-to-longitudinal 
spa.cing ratio k = h/Zis equal to ke 1: 0.28056 (where sinhnk, = 1). It was shown later, 
however, that, even when the spacing ratio takes this value, there wil l  be a weak 
instability for certain finite disturbances (see Kochin, Kiebel & Roze 1964). Thus as 
long aa the stability analysis is based on point vortices, all double rows of vortices are 
unstable. This conflicts with the fact that long-lived KhrmAn vortex streets are 
observed experimentally. 

Domm (1966) investigated the effects of finite cores of vortices on stability by 
making we of circular vortex tubes, but could not obtain any finite stable region. 
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Christiansen & Zabusky (1973) studied the time development of a system of vortex 
tubes of finite core numerically, and found that the finite core has both stabilizing and 
destabilizing effects. It is a remarkable observation that the finite-area vortex streets 
have a small stable region around k = k,. 

In  the present paper we investigate, on the basis of a linear stability theory, the 
effects of the finite core of the vortex on the stability of a vortex street consisting of 
two parallel rows of staggered arrangement. We amume that the area S of the vortex 
core is much smaller than the square of the transverse or longitudinal spacing of the 
vortex street, The motion of a system of vortex tubes of small core is considered in $2. 
It is important to note that both the convective velocity of a vortex tube in a given 
velocity field and the induced velocity of a vortex tube differ from those of a point 
vortex by the same order, i.e. the order of Sa(see (2.33) and (2.40)). This law of motion 
of vortex tubes is used to investigate stability characteristics of a K&rmin vortex 
street of finite core in $3. A finite stable region is found around k = k,. As the core size 
increases, this stable region moves to the larger part of k. Its width also changes with 
core size. It is rather small for S/12 5 0.11, while it increases rapidly with S/12 for 
S / P  2 0.11. The wavenumber of the disturbance having the maximum growth rate 
is shown to be in complete agreement with that of a growing disturbance recently 
discovered in a vortex street behind a circular cylinder (Okude 1978; Okude & Matsui 
1981 private communication). Some remarks about the stability of a Kbrmhn vortex 
street and the numerical work of Christiansen & Zabusky (1973) are made in $4. 

2. Motion of vortex tubes of finite core 
We consider the two-dimensional motion of vortex tubes of small finite core in an 

incompressible and inviscid fluid extending to infinity. It is well known that a point 
vortex of vanishing core induces a velocity field according to  the Biot-Savart law 
and moves with the velocity at the point vortex induced by the other sources (see 
Lamb 1932). If the shape of the core of the vortex tube is circular, neither the induced 
nor convective velocity is affected. The induced velocity due to a vortex tube of 
circular crosssection is the same as that due to a point vortex located at the centre 
of the tube and having the same circulation (see (2.38)), and the vortex tube is con- 
vected with the velocity at its centre induced by the other sources (see below (2.32)). 
If the shape of the core deviates from a circle, both the induced and convective 
velocities are altered. In  the following we examine these effects. 

Let us consider a vortex tube of finite core in an external shear flow 

which is incompressible and irrotational. The cross-sectional area S of the tube is 
assumed to be small compared with the square of the characteristic length of the 
external flow. The vorticity wo is distributed uniformly throughout the cross-section 
and the circulation r around the vortex tube is given by r = w,S. Then, the velocity 
field u(x, t )  is written as 

u(x,t) = - dx’ + U(X, t ) ,  2nS. 11 s 2x(x-x’) lx-xtp 
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where 2 is the unit vector perpendicular to the (x,y)-plane and the integration is 
carried out over the cross-section of the vortex tube. The position of the tube is 
defhed by the centroid of the vortex region : 

The inviscid Navier-Stokes equations for two-dimensional flow are written as 

(2.3) 
aw 
at -+div(uw) = 0, divu = 0, 

where w(x, t) is the vorticity. 

by x over the domain S, we obtain the convective velocity of this vorticity region: 
Suppose that there is an isolated region S of vorticity. If we integrate (2.3) multiplied 

It follows from (2.1) and (2.4) that 

which shows that a vortex region is convected with the velocity induced by the other 
sources. 

Let us express the boundary of the vortex tube by 

f(x,t) = 0. (2.6) 

Since any fluid particle moves with the velocity u(x, t), we have the condition 

[:+(u.grad)]f(x,t) = 0 on f(x,t) = 0. 

We introduce a polar co-ordinate system (r ,  8) moving with velocity (2.5): 

x = X+rcos6, y = Y+rsin6. (2.8) 

If we denote the r- and 6-components of the velocity in this co-ordinate system by 
u, and Ue, respectively, we have 

i- u,cos 6- uesin 8, 
dX 
at 

u=- 

dY 
at 

ZI = -++,~ine+u,cOse. 

Then (2.1) becomes 

+ (A cos 28+ Bsin 26) r + (CCOS 36+ D sin 36) r2+.  . ., 

( 2 . 9 ~ )  

(2.9b) 

(2.10) 
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- ( A  sin 28 - B cos 20) r - (C sin 30 - D cos 38) r 2  - . . . . (2.11) 

We have expanded U(x, t )  around X as 

U(X,  t )  = u,+ (A cos B + B S ~ ~  8) r +  ~ ( C C O S  28+ Dsin 28)r*+ ..., 
V ( x ,  t )  = V, + (B cos 8 - A  sin 8) r + +(D cos 28- Csin 28) r 2 + .  . ., 

(2 .124  

(2.12b) 

where u, = U ( X , t ) ,  V, = V ( X , t ) ,  

a a 
ay 

U(X, t )  = - V(X, t ) ,  
a 

aY ax 

U ( X ,  t )  = - - U ( X , t )  = -- axay V(X,t), 
as 

8 x 2  a y 2  

a 2  a 2  
U ( X , t )  = - V(X, t )  = - - V ( X , t ) .  a 2  

axay 8 x 2  a y 2  

A = , x U ( X , t )  = -- V ( X , t ) ,  

a B = -  

C=- 

D = -  

a 2  a 2  

The dots in (2.10)-(2.12) stand for the higher-order terms with respect to r. 
The boundary condition (2.7) converts into 

(2.13) 

(2.14) 

where f(r,  8;  t )  = f ( x ,  t ) .  
We now determine the shape and the convective velocity of the vortex tube by a 

method of perturbation starting from a circular cross-section. The expansion para- 
meter for the perturbation is the smallness of the cross-section compared with the 
scale of the external flow. 

We put f(r, 8; t )  = r-rb(8, t ) ,  (2.15) 

rb(8,t) = ro+rd(8,t).  (2.16) 

Here r, [ = (i3/7r)i], which is independent of 8 and t ,  represents a circular cross-section 
of invariant area in the leading order of the perturbation, while r d  (lrdl 4 r,) represents 
a deviation from circular form due to the external flow. Then (2.14) is rewritten aa 

(2.17) 

We consider the situation where r, A,  B, C and D are quantities of order one, and 
r,, or S, is very small compared with them. Although we do not non-dimensionalize 
our quantities, we can regard r, as an expansion parameter. If we suppose that 
ro 9 trd(8,t)J, then the integrals in (2.10) and (2.11) can be calculated successively, 
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and we find 
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(2.20) 

where the superscripts denote the order with respect to r,. 
The leading-order term represents the situation where there is no external flow and 

the shape of the cross-section of the vortex tube is circular. If we neglect rd, A,  B, C 
and Din (2.17)-(2.19) we get 

(%yo) = u,. (2.21) 

Next, we take account of the first-order terms of rd  and the terms containing A and B 
in (2.18) and (2.19). Then (2.17) gives 

w e  expand rd(6, t )  in a Fourier series: 

(2.23) 

The lack of the n = 0 and 1 modes in (2.23) comes from the incompressibility of the 
fluid and the definition of the centre of the vortex tube (see (2.2) and (2.8)). 

Substitution of (2.23) into (2.22) gives 

(2.24 a) aan r - + ( n - l ) +  = Ar,6,,, 
at 

(%)(l) = 0, 

where 6 is the Kronecker &symbol. 

(2.26;) 
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Equations ( 2 . 2 4 ~ ~  b) have the following solutions: 

a, = - -To B + ~{a.j~)eexp [itr/~~]} + o($), 

b, = 

a, = W{uF)exp [ i (n-  i)tr/2r~]}, 

r 
roA +W{bi3) exp [itr/28]} + O(& 2 s  

* (2.26) 

where a:) and bg) (n = 2,3, ...) are constants of integration and are assumed to be 
O(4). We have used the condition that S/r is much less than the characteristic times 
of the external flow and the motion of the centroid of the vortex tube. Then we have 

rd = F r o (  A sin 20 - B COB 20) 
W 

+W (uS)CosnB+b',3)sin,8)exp[i(n- l)tr/2S]+rd4)+ ..., (2.27) 
n=2 

where r f )  is the next-order term, which is O(4) (see (2.30)). 
The equation for rA4) is obtained from the next-order terms in (2.17)-(2.19): 

In  just the same way as for (2.22) we find 

($)@) = 0, (2.29) 

(2.30) 
S 

r,44)(8,t) = --r:(Csin ~ ~ - D c o s  38). r 
The free-oscillation terms have been included in the summation of (2.27). 

It follows from (2.16), (2.27) and (2.30) that the shape of the vortex tube is written as 

2Sr0 
rb(O, t )  = ro + 

+ W 

(A sin 28 - B cos 20) 

( a 9  cos n0 + b(,9) sin me) exp [i(n - 1 ) tr/2S] 
03 

n-2 

(2.31) 
sr; 
r + - (csin 38 - D cos 38) + O(rg). 

Thus the shape of the vortex tube oscillates rapidly around that determined by the 
instantaneous external velocity field. 

Incidentally, the steady form of an elliptic vortex of uniform vorticity and its 
orientation in a steady uniform shear flow are already known (Moore & Saffman 1971; 
Kida 1981). We can check that if the external flow is steady the second term in (2.31) 
agrees with the steady elliptic vortex in the limit of small deviations from a circular 
form. 
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Now that the shape of the vortex tube has been obtained, we can calculate the 
convective and induced velocities of a vortex tube. First, we calculate the convective 
velocity (2.6) of a vortex tube. Equations (2.25) and (2.29) imply that the convective 
velocity of a vortex tube is not affected to O(rg) by the external flow. In fact, as will be 
shown in the following, the correction of the convective velocity due to the external 
flow appears in O(4). We rewrite (2.5) as 

where U(r, 8;  t) = U(X, t ) .  

The first integral in (2.32) represents the average of an incompressible and irro- 
tational flow over a circular domain and is equal to the velocity at  the centre of the 
circular domain owing to the mean-value property of a harmonic function (see 
e.g. Ahlfors 1966). The second integral can be calculated by making use of the Taylor 
expansion (2.12) of the velocity field and the shape of the vortex tube (2.31). After 
some manipulation we obtain 

auaau) 
ax -= U(X,t)+-(----- sa au aau 
at n r  axaxay ayaxa (2.33a) 

(2.333) 

where the neglected terms are O(lbg).t 

which is given by the first term of (2.1): 
Next, we calculate the induced velocity due to a vortex tube of finite cross-section 8, 

(2.34) 

Let us divide the domain of integration into two parts: a circular domain So of radius 
?o and the remainder S - So: 

We have used the abbreviation 

(2.36) 

(2.37) 

t Strictly speaking, there are rapidly oscillating terms O(<) whose frequency is r/2S. If we 
take an average of (2.33) over a time interval that is much longer than the period of this oscil- 
lation but much shorter than the characteristic time of the external flow, then these terms 
become O($). Equations (2.33), (2.40), (3.2) and (3.3) should be regarded aa such coarse-grained 
equations with respect to time. 
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to be 
If the centre of the vortex tube is a t  the origin, then the integral (2.36) is calculated 

r a X x  
uo(x,t) =c -- 

2R 1x1s ' (2.38) 

which shows that a vortex tube of circular cross-section can be replaced by a point 
vortex having the same circulation. 

If we expand l/lx-x'l* in a power series of x', then the integral (2.37) can be 
written as 

The first and second integrals of (2.39) vanish because the areas of 8 and So am equal 
and the centre of the vortex tube lies a t  the origin. The third integral can be calculated 
explicitly when the shape of the vortex tube is given by (2.3 1 ) , After some calculation 
we find 

u(x,t) = - -- ( ~ * - 3 y * ) r + ( K )  (3r*-ya)y], (2.40a) 
aY 0 

(2.40 b )  

where (aU/az), and (aU/ay), are the derivatives of the 2-component of velocity at the 
centre of the vortex tube induced by the other sources. The neglected terms in (2.40) 
are O(6) (see the footnote to (2.33)). Note that (2.40) contains only the first derivatives 
of the external velocity with respect to the space co-ordinates and agrees with the 
velocity field induced by a slightly elliptical vortex (Moore & Saffman 1971). 

3. Stability of a K h h n  vortex street 
An analysis based on point vortices of vanishing core revealed that an asymmetric 

configuration as shown in figure 1 is stable only when the transverse-to-longitudinal 
spacing ratio k 3 h/Z takes a special value k, (Lamb 1932). We are interested in the 
problem of whether there appears a finite stable region around k = k, if effects of finite 
core of vortex tubes are taken into account. 

We consider an mymmetric configuration of double rows of vortex tubes of finite 
core. The distance between the two rows is h and that between consecutive vortices in 
the same row is 1. The areas S of the cores are assumed to be common and much less 
than I*. A physical requirement that the neighbouring vortex tubes must not overlap is 

if the cores of the tubes are approximated by circles. The vorticity ia assumed to be 
uniformly distributed throughout the core. All the vortex tubes in the upper row have 
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FIGURBI 1. A K&mh vortex street of bite core ; 
h/l = ko N 0.28066, (8/2')* = 0.02. 

the same circulaticin I' and those in the lower row the opposite circulation - r. Let 
the perturbations of the centres of vortex tubes in the upper row be (xm, y,) and those 
in the lower (xi, &); then the co-ordinates of the centres of the vortex tubes in the upper 
row are (ml+ Vt + xm, i h  + y,) and those in the lower [(n + 4) 1 + Vt + x;, - i h  +y3, 
where m and n are integers and V denotes the velocity of advance of the Khrmhn 
vorfex street. 

The equation of motion of the centre of the vortex tube corresponding to m = 0 
can be derived by making use of (2.33) and (2.40): 
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The velocity (3.4) is the first-order approximation of the %-component of the velocity 
at  the centre of the m'th vortex tube in the upper row induced by all the other vortex 
tubes. The velocity uh# of the n'th vortex tube in the lower row is obtained from (3.4) 
by the following transformation: 

m a n ,  m'-+n', r+-I', h+-h, xax', yay ' .  

The velocity of advance V is obtained from (3.2) by setting the perturbation equal 
to zero: 

V = s t anhnk  [ 1 -- 2ysech2nk(sech"nk-f) 1 . 
The second term represents a correction due to the finite core of the vortex tubes. 

Let the perturbation (x,) y,) and (x;, y:) be so small in magnitude compared with 
I that the linearization of the system (3.2) and (3.3) is permissible; and let us consider 
a perturbation of the type 

(3.7a) 

(3.7b) 

where a, 8, a', t?', q5 and h are constants. q5 represents the wavenumber of the pertur- 
bation, and may be assumed to lie between 0 and 2n. The imaginary part of h represents 
the growth rate of the perturbation; the vortex street is stable or unstable according 
to whether it is zero or non-zero. 

Introducing these forms into the linearized equations of (3.2) and (3.3), we obtain 

i(Ai+ A) - (Bo + B1) - i(c0 + c1) - (Do + 0 1 )  

- i(Q0 + C,) Do + Di i(A1 +A)  Bo + B1 
Do +D2 i(C0 + C,) Bo + B, i(Ag+A) 

- ( B 0 + B 2 )  i ( A 2 + A )  i(co+cz) I[:] = 0, (3.8) 

where 

P2 

2n' 
B , =  - - ( E2 + G2 + I2 + 2 J 2  - FH - CJ/k), 

P2 
Bg = 2n2 (E' + G2 + I' + FH), 

P2 P2 
2na ci = -(EJ-FK-CE/k), C2 = -(EJ-FK), 2n2 

(2EI + FL + G J ) ,  P2 
D1=-(2EI-FL+3GJ-CG/k), D2 =-- 2n2 2n2 

(3.9) 

(3.10), (3.11) 

(3.12) 

(3.13) 

(3.14), (3.15) 

(3.16), (3.17) 
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(3.24) 

(3.25) 

(3.26) 

(3.27) 

Equations for a' and have been derived from those for a and 
signs of r and k and interchanging primed and unprimed letters. 

by reversing the 
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FIU- 2. Stability diagram for a K6rm6n vortex street of finite core. The solid curves indicate 
the stability boundaries and the dotted lines the wavenumbem of disturbances having the 
maximum growth rate for given k and P. 

In  order that (3.8) have non-trivial solutions, the determinant of the matrix of the 
coefficients must be zero: 

(A k 0 0 ) ' -  [A, + A ,  f ( 4 + Q 2 ) 3  (A k Co) 
+[Bo+B1f(Do+Dl) ] [Bo+BzT (D0+D2)] = 0. (3.29) 

This is a quadratic equation for A having real coefficients. The stability condition is 
that A be real, i.e. that the discriminant of (3.29) be non-negative: 

or 
[A,+A,+ (C1+C,)l2-4[Bo+B1f (Do+D,)][&+B,T (D,+DJ] 2 0 

4C(Do+D1) (DO+D,)- (BO+B,) (Bo+BJl+ (Ql +CA2+ ( 4 + 4 Y  
2 21 (C, + C,) (A,  + A,) + 2(B, + B,) (Do + 4) - 2(B, + B,) (Do + DJl. (3.30) 

The stability characteristics of a KhrmiLn vortex street are shown for various values 
of P and for 0 < q5 < n in figure 2. The solid curves indicate the stability boundaries 
given by (3.30). Note that the stability characteristics are symmetric in q5 about 
4 = n, since the functions B,, B,, C,, C,, B,, C,, E,F, H, J, K are symmetric and 
A,, A,, D,, D,, Do, a, I, L are antisymmetric. In  order that a vortex street of spacing 
ratio k may be stable against any small disturbance, it must be stable for all q5 at fixed 
k. For P = 0 (the point-vortex approximation) only a single value k = ke is stable. 
For finite P, on the other hand, there appears a finite stable region around k = k,. 
It is seen that the finite core of vortex tubes has a stabilizing effect on disturbances 
of larger values of 4 but a destabilizing effect on those of smaller values of 4. 

When k+ 00, the stability boundary for P = 0 approaches the curve 

q5 = 4nexp (-nk). (3.31) 

This implies that a single row of a vortex street (k = 00) is unstable for all q5. 
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0.275 0.28 0.285 0.29 0.295 
k 

FIa- 3. stability diegram near k = k, end # = n. The solid curvea indicate the stability 
boundaries and the dotted lines the wavenumbers of disturbances having the maximum growth 
rate for given k end P. The dashed curves are the loci of the extremd points of the sbbility 
bounderi-. The point A = (0.286 19, 0.880 1). 

The dotted lines in figure 2 indicate the wavenumbers of disturbances having the 
maximum growth rates for fixed k and P. When P = 0 these wavenumbers are equal 
to n for all k, i.e. the disturbances whose wavelengths are double the longitudinal 
spacing of a vortex street grow most rapidly. For finite P, however, these wavenumbers 
deviate from n, and the disturbances of wavelengths other than double the longi- 
tudinal spacing determine the stability condition of a vortex street. 

A strange wavenumber of a growing disturbance, 2 n x  260/420 z l.i9n, was 
discovered by Okude (1978) in a K&rm&n vortex street behind a ciroular cylinder. The 
origin of this mode may be explained by the present theory as follows. It was shown 
recently by Okude & Matsui (1981 private communication) that the velocity distribu- 
tion across this vortex street is well approximated by Rtlnkine vortices. Their data at 
a distance of 20 diameters downstream of the cylinder are consistent with the choice 
of the parameters Pa 21 0.02 and k II 0.28. The wavenumbers of disturbances having 
the maximum growth rate are then given by 

q51!(lf0*19)n (3.32) 

(see figure 3 or (3.36)).  The upper sign of (3.32) coincides with the experimental value 
l-lQm. It is not known, however, why the disturbance of the wavenumber corres- 
ponding to the lower sign has not been detected in their experiment. 

A close-up near k = k ,  and q5 = n is shown in figure 3. The stability boundary for a 
finite P has extremal values of k at two points. If we denote these two pointa by 
[k*(P),&(P)], where k-(P) Q k+(P), then the stable region of a vortex street is 
expressed as kJP)  Q k G k+(P). (3.33) 
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FIarraE: 4. Stability di8gram in the area-spacing-ratio (l", k)-plene. 8, etable region; u, unstable 
region. The point A = (0.28619, 0.0127). This diagram m&y be reliable at least below the 
hatched band. 

The functions #*(P) represent the wavenumbers of the most-unstable disturbances 
that determine the stability condition of a vortex street. The dashed curves in figure 3 
are the loci of [k*(P),  #*(P)]. They meet at  k N 0.28619 and #/n N 043801 when 
Pa 2: 0.0127. 

In the vicinity of k = k ,  and # = n, the stable condition (3.30) is written rn 

(3.34) 

i.e. the boundary is approximated by a hyperbola. Then we have 

(3.35) 

k+(P)  - kc = &n (3.36 a)  

(3.36b) 
k-(P)  - k,  = A n  (- 3 - 4 2 )  P* N 0.260P*. 

nkC 

The functions k*(P) increase with P, and therefore the stable region moves to the 
larger part of k as P increases. 
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I I I 

P 
FIUURE 6. The wavenumbera of the morrt-unstable disturbenaes $*(P). 

Incidentally, by putting # = A in (3.34), we get the stable condition for special 
disturbances of wavenumber A aa follows : 

or - 0.5938P' 5 k - kc 1.706P'. (3.37) 

The functions k*(P) are plotted in figure 4,  where B and U denote respectively the 
stable and unstable regions of a vortex street. The two straight lines are the asymp- 
totes (3.36) for very small P .  Thiq diagram may be reliable at least below the hatched 
band, the centreline of which corresponds to the configuration in which 

the effective diameter of the vortex tube - - 2ro = 2 4 ,  
the distance between the centres of nearest vortex tubes (t + ka)tl 

or P = )J&a(t+k') (= P,,=y) (3.38) 

(of. the discussion concerning figure 6). 
As the m a  of the core inorem, the stable region moves to the larger part of k aa 

a whole. The width of the stable region, k+(P) - k-(P) ,  is zero at P = 0. This width 
increases at first in proportion to the square of P like (3.36), takes a maximum value 
at P 1: 0-006, then decrews, and vanishes at Pa II 0.0127 and k 21 0.28619, but 
beyond this point it increases again rather rapidly. 

The wavenumbers #*(P) of the most-unstable disturbances that determine the 
stability condition are depicted in figure 6 .  When P = 0, both of them are equal to A, 
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FXIGIUIUC 6. Stability diegram for the disturbances of wavenumber n. The solid curvea me the 
stable/unstable boundazies. 8, stable region; U, unstable region. The symbols 0 and x indicete 
stable and unstable states according to Saffman & Schatzman (1982). The present results (the 
solid curves) agree well with their results, at least below the hatched band. 

i.e. the most-unstable modes are the disturbances whose wavelengths are double the 
longitudinal spacing of a vortex street. For finite P, however, these wavenumbera 
deviate from n. They change almost linearly with P8 according to (3.35) for Pa < 0.016. 

Recently Saffman & Schatzman (1982) attacked the same problem by solving 
numerically the linear evolution equations of disturbances of a special wavenumber n 
for various values of P and k. In their theory P does not need to be small. The results 
of their stability calculations are plotted in figure 6, which is reproduced using the 
data in table 1 of their paper. The circles and crosses indicate the stable and unstable 
states, respectively. We can see a triangular stable region that is limited by two 
boundaries for agiven k. The upper boundary lies somewhere around 0.04 5 P8 5 0.06, 
while the lower one increases with Ik- k,l. They seem to meet at  k 2: 0.24 and 0.35. 

Unfortunately, however, as stated before, the disturbances of wavenumber n are 
not the most-unstable modes for finite P, and their results never give the stability 
condition of a K&rm&n vortex street of finite core. 

The thick solid lines in figure 6 are the stability boundaries of this particular mode 
from the present theory, which is obtained by putting qi = n in (3.30). They represent 
the lower boundary well, at  least up to the hatched band, the centreline of which is 
given by (3.38). For very small P, the lower boundary is expressed by (3.37), which is 
identical with the result of Saffman & Schatzman (1982) (see (3.19) of their paper 
and note that 1.705-4 2: 0.77 and 0.5938-4 2: 1.30). This is the reason why we believe 
that the stable condition (3.30) may be reliable at least for P S P,. 

In the present approximation the shape of the vortex core is expressed by (2.31). 
In the case of an asymmetric configuration we are now considering, the velocity (u, v) 
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near the centroid of a vortex tube in the upper row induced by all the other vortices is 
written as 

u(x ,y )  = -tanhnk-~(l-3sech8nk)y r 
21 61a 

m 
V(X,Y)  = -- (1 - 3 ~ ~ h ' n k )  x 

612 

(3.39a) 

(3.36 b) 

where (x ,  y) is the space co-ordinate relative to the centroid. Therefore the constants 
in (2.31) are calculated to be 

(3.40) 
m Fn* sinhnk 
618 P coshsnk' 

A = D = 0, B = - - (1 - 3 sechank), 0 = - 

The mean shape of a vortex tube without the free-oscillation terms is then given by 

1 + &nP( 1 - 3 sech8 nk) cos 28 + (nP)i cash sinh nk sin381 , (3.41) 
3 k  

which is symmetric in 8 about 8 = in. The vortex in the lower row has the same form, 
but is upside-down. The shapes for k = k, and Pa = 0.02 are plotted in figure 1. 

4. Discussion 
As conjectured by Christiansen & Zabusky (1973), if finite coresof vortex tubes are 

taken into account, there appears a stable region around h/l = kc. However, since we 
are dealing with inviscid Navier-Stokes equations, which are time-reversible, the 
street is at  most neutrally stable, i.e. there is no region where the growth rate is 
negative. The growth rate of the perturbation is given by 

l- 
Jh='JA, 

2nP 

where YA is obtained from (3.29). For q5 = n and k = 0 we have 

n r  J h  N - ( 1 - + n F ) .  
412 

For q5 = nandk = a0 we have 
n r  

J h  1( - (1 + &nSP". 4lS 

These growth rates agree qualitatively with the numerical results of Christiansen t 
Zabusky (1973) that the growth rate is reduced at smaller values of k and increased at 
larger values of k by finite-core effects. 

It is known experimentally that for the vortex streets behind a circular cylinder the 
spacing ratio changes with downstream distance (see Wale 1960). According to a 
recent measurement of Okude t Matsui (1981 private communication), the spacing 
ratio increases monotonically from 0.1 to a maximum value 0.45 between distances of 
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6 and 60 diameters downstream of a cylinder and then it seems to decrease gradually. 
We do not know where this discrepancy of the spacing ratio between theoretical and 
experimental values comes from. Probably the assumptions of infinite rows of vortex 
tubes and the uniform distribution of vorticity in vortex cores have to be checked 
finst (Weihs 1972). 
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